13,387 research outputs found

    Can Heavy WIMPs Be Captured by the Earth?

    Get PDF
    If weakly interacting massive particles (WIMPs) in bound solar orbits are systematically driven into the Sun by solar-system resonances (as Farinella et al. have shown is the case for many Earth-crossing asteroids), then the capture of high-mass WIMPs by the Earth would be affected dramatically because high-mass WIMPs are captured primarily from bound orbits. WIMP capture would be eliminated for M_x>630 GeV and would be highly suppressed for M_x>~150 GeV. Annihilation of captured WIMPs and anti-WIMPs is expected to give rise to neutrinos coming from the Earth's center. The absence of such a neutrino signal has been used to place limits on WIMP parameters. At present, one does not know if typical WIMP orbits are in fact affected by these resonances. Until this question is investigated and resolved, one must (conservatively) assume that they are. Hence, limits on high-mass WIMP parameters are significantly weaker than previously believed.Comment: 8 pages + 1 figure. Submitted to Ap

    Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    Get PDF
    In the cold-fluid dispersion relation ω = ω_p/[1+(k_⊥/k_z)^(2]1/2) for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k_⊥/k_z. As a result, for any frequency ω<ω_p, there are infinitely many degenerate waves, all having the same value of k_⊥/k_z. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr = ±(ω_p^2/ω^2-1)^(1/2). Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid

    Generalised Perk--Schultz models: solutions of the Yang-Baxter equation associated with quantised orthosymplectic superalgebras

    Full text link
    The Perk--Schultz model may be expressed in terms of the solution of the Yang--Baxter equation associated with the fundamental representation of the untwisted affine extension of the general linear quantum superalgebra Uq[sl(mn)]U_q[sl(m|n)], with a multiparametric co-product action as given by Reshetikhin. Here we present analogous explicit expressions for solutions of the Yang-Baxter equation associated with the fundamental representations of the twisted and untwisted affine extensions of the orthosymplectic quantum superalgebras Uq[osp(mn)]U_q[osp(m|n)]. In this manner we obtain generalisations of the Perk--Schultz model.Comment: 10 pages, 2 figure

    Stationary quantum Markov process for the Wigner function

    Full text link
    As a stochastic model for quantum mechanics we present a stationary quantum Markov process for the time evolution of the Wigner function on a lattice phase space Z_N x Z_N with N odd. By introducing a phase factor extension to the phase space, each particle can be treated independently. This is an improvement on earlier methods that require the whole distribution function to determine the evolution of a constituent particle. The process has branching and vanishing points, though a finite time interval can be maintained between the branchings. The procedure to perform a simulation using the process is presented.Comment: 12 pages, no figures; replaced with version accepted for publication in J. Phys. A, title changed, an example adde

    Temporal and spatial plasma wave echoes

    Get PDF
    It is shown that, if a longitudinal wave is excited in a collision-free plasma and Landau-damps away, and later a second wave is excited and also damps away, then a third wave will spontaneously appear in the plasma. This wave appears long after the first two waves have damped away at a time proportional to the interval between the first two waves, and is in that sense an echo. It is also shown that, if a wave is continuously excited at one point in a plasma and a second wave is continuously excited many Landau damping lengths from the first point, then a third wave will spontaneously appear many Landau damping lengths from the second point. Fundamentally, plasma wave echoes are possible because of the reversible nature of Landau damping. However, small-angle Coulomb collisions are very effective in destroying the echo

    Replication enhancer elements within the open reading frame of tick-borne encephalitis virus and their evolution within the Flavivirus genus

    Get PDF
    We provide experimental evidence of a replication enhancer element (REE) within the capsid gene of tick-borne encephalitis virus (TBEV, genus Flavivirus). Thermodynamic and phylogenetic analyses predicted that the REE folds as a long stable stem–loop (designated SL6), conserved among all tick-borne flaviviruses (TBFV). Homologous sequences and potential base pairing were found in the corresponding regions of mosquito-borne flaviviruses, but not in more genetically distant flaviviruses. To investigate the role of SL6, nucleotide substitutions were introduced which changed a conserved hexanucleotide motif, the conformation of the terminal loop and the base-paired dsRNA stacking. Substitutions were made within a TBEV reverse genetic system and recovered mutants were compared for plaque morphology, single-step replication kinetics and cytopathic effect. The greatest phenotypic changes were observed in mutants with a destabilized stem. Point mutations in the conserved hexanucleotide motif of the terminal loop caused moderate virus attenuation. However, all mutants eventually reached the titre of wild-type virus late post-infection. Thus, although not essential for growth in tissue culture, the SL6 REE acts to up-regulate virus replication. We hypothesize that this modulatory role may be important for TBEV survival in nature, where the virus circulates by non-viraemic transmission between infected and non-infected ticks, during co-feeding on local rodents

    Kinetic modelling and molecular dynamics simulation of ultracold neutral plasmas including ionic correlations

    Full text link
    A kinetic approach for the evolution of ultracold neutral plasmas including interionic correlations and the treatment of ionization/excitation and recombination/deexcitation by rate equations is described in detail. To assess the reliability of the approximations inherent in the kinetic model, we have developed a hybrid molecular dynamics method. Comparison of the results reveals that the kinetic model describes the atomic and ionic observables of the ultracold plasma surprisingly well, confirming our earlier findings concerning the role of ion-ion correlations [Phys. Rev. A {\bf 68}, 010703]. In addition, the molecular dynamics approach allows one to study the relaxation of the ionic plasma component towards thermodynamical equilibrium
    corecore